$14 / 9 / 23$
MATT -403O lecture
Recap:

- Locally at $s_{0} \in I, \alpha(s)=\left(s-\frac{1}{6} k_{0}^{2} s^{3}, \frac{1}{2} k_{0} s^{2}+\frac{1}{6} k_{0}^{3} s^{3},-\frac{1}{6} k_{0} \tau_{0} s^{3}\right)+0\left(s^{3}\right)$ in Coordinates induced by $\left\{\tau_{0}, N_{0}, B_{0}\right\}$.
Local Canonical Form λ (according to do Carmo).
- Illustration:

Projection onto span $\left\{T_{0}, N_{0}\right\}$.

Existence Part of Fundamental thin of Local Theory of Cures
Thu from OPE: Gwen mitral condition $s_{0} \in I,\left(z_{1}\right)_{0}, \ldots,\left(z_{q}\right)_{0}$, there exists an open interval $J \subset I$ with $s_{0} \in I$ and a unique differential mapping $\alpha: J \rightarrow \mathbb{R}^{9}$ with $\alpha\left(s_{0}\right)=\left(\left(z_{1}\right)_{0}, \ldots,\left(z_{q} l_{0}\right)\right.$

$$
\alpha^{\prime}(s)=\left(f_{1}, \ldots, f_{q}\right)
$$

where $f_{i}, i=1, \ldots, 9$ are function of $(s, \alpha(s)) \in J \times \mathbb{R}^{9}$.
Furthermore, if the system is linear, then we can take $y=I$.
(Reference: Serge Lang, Undergraduate Cunalysis, 18.3"Linear Differential Equation")

Pf of Existence: Recall Frenet's formulas:

$$
\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right], s \in I .
$$

can be consoled a differentiable system in $I \times \mathbb{R}^{9}$ (each vector $T, N, B \in \mathbb{R}^{3}$)

$$
\text { ie. }\left\{\begin{array}{l}
\frac{d z_{q}}{d s}=f_{1}\left(s, z_{1}, \ldots, z_{q}\right) \\
\frac{d z_{q}}{d s}=f_{q}\left(s, z_{1}, \ldots, z_{q}\right)
\end{array}\right.
$$

where $\left(z_{1}, z_{2}, z_{3}\right)=T,\left(z_{4}, z_{5}, z_{6}\right)=N,\left(z_{7}, z_{8}, z_{9}\right)=B$. $f_{i}, i=1, \ldots, q$ are linear functions (w / coefficient that may depend on) of z_{i}.

Explicitly,

$$
T=\left(T_{1}, T_{2}, T_{3}\right)
$$

$$
T_{i}, N_{i}, B_{i} \in \mathbb{R}
$$

$T, N, B \in \mathbb{R}^{3}$.
$N=\left(N, N_{2}, N_{3}\right)$
$B=\left(B_{1}, B_{2}, B_{3}\right)$.

$$
T_{3}^{\prime}=k N_{3}
$$

and so on.

$$
\begin{aligned}
& T_{2}^{\prime}=k N_{2} \Rightarrow T^{\prime}=\left(T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}\right)=\left(k N_{1}, k N_{2}, k N_{3}\right)=k N .
\end{aligned}
$$

Then by $O D E$ thm, guien intial data $S_{0} \in J$

$$
\begin{aligned}
& T_{0}=\left(\left(z_{1}\right)_{0},\left(z_{2}\right)_{0},\left(z_{3}\right)_{0}\right), N_{1}=\left(\left(z_{4}\right)_{0},\left(z_{5}\right)_{0},\left(z_{6}\right)_{0}\right) \\
& B_{0}=\left(\left(\gamma_{7}\right),\left(z_{8}\right)_{0},\left(z_{q_{0}}\right)\right.
\end{aligned}
$$

there exists a fanily of fromes $\{T(s), N(s), B(s)\}, s \in J=I$ sit. $\left[\begin{array}{l}T \\ N \\ B\end{array}\right]^{\prime}$ soctiffies. Frenet fomilas.
We need to deech theit $\{T(s), N(s), B(s)\}$ remain orthonormal for $s \in I$.

$$
\begin{aligned}
\frac{d}{d s}\langle T, N\rangle & =\left\langle T^{\prime}, N\right\rangle+\left\langle T, N^{\prime}\right\rangle \\
& =k\langle N, N\rangle-k(\tau, T\rangle+\tau(T, B\rangle \\
\frac{d}{d s}(T, B\rangle & =k\langle N, B\rangle-\tau\langle T, N\rangle \\
\frac{d}{d s}(N, B\rangle & =-k(T, B\rangle+\tau<B, B\rangle-\tau<N, N\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d s}\langle T, T\rangle=2 k\langle T, N\rangle \\
& \frac{d}{d s}\langle N, N\rangle=-2 k\langle N, T\rangle+2 \tau\langle N, B\rangle \\
& \frac{d}{d s}\langle B, B\rangle=-2 \tau\langle B, N\rangle
\end{aligned}
$$

We can chech theist $\langle\tau, N\rangle=0,\langle\tau, B\rangle=0,\langle N, B\rangle=0$

$$
\langle\tau, \tau\rangle=1,\langle N, N\rangle=1,\langle B, B\rangle=1
$$

is a solution to the system alone nf initial conditions $0,0,0,1,1,1$.
Then by uniqueness, this st the solution to the system above, and $\{T(s), N(s), B(s)\}$ stays othonomal for all $s \in I$.
Now we obtain the curve by integrating urt.s:

$$
\alpha(s)=\int_{c \in T} T(s) d s
$$

${ }_{s \in I} \simeq$ integratiy component by component.

By $F T C, \alpha^{\prime}(s)=T(s)$.

$$
\alpha^{\prime \prime}(s)=\tau^{\prime}(s)=k(s) N(s)
$$

$\tau^{k}(s)$ is the curvature of α.

$$
\begin{aligned}
& \frac{\left\langle\alpha^{\prime} \times \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right\rangle}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|^{2}} \begin{aligned}
\text { ar- } \\
\text { length }
\end{aligned} \\
&=\frac{\left\langle T \times k N, k^{\prime} N-k^{2} T+k \tau B\right\rangle}{|T \times k N|^{2}} \\
&=\frac{k\left\langle B, k^{\prime} N-k^{2} T+k \tau B\right\rangle}{k^{2}|B|^{2}} \\
& k^{2}|B| /\left||B|^{2}\right.=\tau
\end{aligned}
$$

Therefore, α has arvatue guin by k, torsion given by τ

$$
\begin{aligned}
\frac{d}{d s} f & =\frac{d}{d s}\left(|\tau-\bar{\tau}|^{2}+|N-\bar{N}|^{2}+|B-\bar{B}|^{2}\right) \\
& \leqslant C\left(\sup _{s \in L}|k|, \sup |\tau|\right) f
\end{aligned}
$$

Cain: $\left\{\begin{array}{ll}\frac{d}{d_{s}} f \leqslant C f, & B\left(s_{0}\right)=\bar{B} \\ f\left(s_{0}\right)=0 .\end{array} \Rightarrow f(s)=0\right.$ for all $s \geqslant s_{0}$.
If If Claim: $W L O G$ can take $S_{0}=0$. Call $M:=$ max $|f|$ well is attained at some $X_{0} \in[0,12]$ $\left[0, \frac{1}{2 C}\right]$ by contiminity of f.
Then by $\frac{d}{d s} f \leq C f$, we have for any $s \in\left[0, \frac{1}{2 c}\right]$,
$\left|f(s)-f\left(P^{0}\right)\right| \leqslant \int_{0}^{s}\left|f^{\prime}(t)\right| d t \leqslant \int_{0}^{5} C|f(t)| d t \leqslant C M \cdot s$. bit since $s \leqslant \frac{1}{2 c}$ in particular, we get $|f(s)| \leqslant \frac{M}{2}$ for $s \in\left[0, \frac{1}{2 c}\right]$.
But since M is attained somewhere, we get $\left|f\left(x_{0}\right)\right|=M \leqslant \frac{M}{2} \Rightarrow M=0$. So $f=0$ on $\left[0, \frac{1}{2 C}\right]$. Extend to all of $\left[0, \infty\right.$) by induction (ie show $f=0$ on $\left[\frac{n}{2 c}, \frac{n+1}{2 c}\right]$ forall n J

